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Project: Implementing a Parallel Version of
Grover’s Algorithm in a Quantum Simulator
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Abstract—We are using a simulated quantum computer to compare the performance of Grover’s search algorithm [1]
with a faster version proposed by Ozhigov [2]. Grover’s algorithm allows to search through a domain of cardinality N for
k targets by kπ

√
N

4
simultaneous queries to an oracle. Ozhigov’s version improves the speed by a factor of

√
2 for the

case k ≥ 2. We will discuss Ozhigov’s algorithm, provide an implementation, and analyze its expected running times to
confirm the claimed speedup.
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1 INTRODUCTION

QUANTUM computing has been an excit-
ing field of research ever since Feynman

proposed quantum computation in 1982 [3]
and Deutsch proved in 1985 [4] that entangled
quantum bits—in short qubits—can be used to
achieve a polynomial speedup over calculation
with classical bits.

However, quantum computers are a delicate
piece of hardware and their implementation
still poses some challenges that have to be
overcome [5]. The currently most powerful
quantum system applicable to our problem,
has 72 qubits. It is the quantum computer
developed by Google in 2018 [6]. However,
the actual power of a quantum system, the
quantum volume, cannot solely be described
by the number of physical qubits. It also de-
pends on the connectivity of the device, the
number of parallel operations, and the number
of gates that can be applied before errors cause
the device to essentially behave classically [7].
Therefore, a physical quantum system will not
perform as reliable as a system that simulates
the same number of qubits.

Despite the limited power of physical quan-
tum systems available today, research on quan-
tum algorithms is still a very relevant topic,
because once the hardware has caught up, the
algorithms developed and tested on quantum

simulators can be executed on physical quan-
tum computers as soon as they become avail-
able. The currently largest quantum computing
simulator can simulate up to 121 qubits [8].

With our hardware, we can simulate a sys-
tem of 18 qubits, which is sufficient to run
Ozhigov’s algorithm for a domain described by
6 bits.

2 BACKGROUND

In this section, we are describing Grover’s
search algorithm, Ozhigov’s parallelized ver-
sion of it, and introduce the simulator we are
using.

2.1 Quantum Simulator
We decided to use the Python programming
language due to its simplicity and the avail-
ability of libraries, like NumPy [9], for scien-
tific computing. As quantum simulator we are
using the 4.5.0 version of the Quantum Toolbox
in Python (QuTiP) developed by Johansson et
al. [10], [11]. We mainly make use of its imple-
mentation of tensor multiplication, as well as
the CNOT and the SNOT (Hadamard) gate. It
uses NumPys sparse complex matrices, which
allows for the intuitive handling of quantum
objects. They can be added, subtracted, multi-
plied, and divided (by a scalar) with standard
Python operators.
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2.2 Grover’s Algorithm
Given an oracle (a black box function) the
quantum search algorithm described by Lov
Grover finds, with high probability, the unique
input that causes the oracle to return a partic-
ular value. The oracle is a function f that takes
a binary number x as the input and returns the
value 1 in a single point x0 and the value 0 in
any other point. We call the input x0, where
f(x0) = 1, the solution or the target. As the
oracle is a black box function it is impossible to
determine how close an input x is to the target
x0.

An example function is:

f(x) =

{
1 if x = x0,

0 if x 6= x0;

To find the value x0, a classical computer needs
to call the function sequentially with every
possible input, which leads to a complexity of
O(N), where N = 2n with n = |x0|, the length
of the word x0.

An example application is brute-forcing the
256-bit key of a symmetric encryption algo-
rithm. Using a classical computer, we would
need to try N = 2256 possible inputs sequen-
tially, in the worst case, which is infeasible
with current hardware. This algorithm has a
complexity of O(2n), where n is the bit count
of the symmetric key.

Grover’s algorithm reduces the complexity
to O(2n2 ). In the above example, it reduces
the number of queries from 2256 when using
a classical algorithm, to 2128.

However, the speedup provided by Grover’s
algorithm for this task can be trivially miti-
gated by increasing the key length from 256 bits
to 512 bits. Thus, the protection offered by sym-
metric encryption against Grover’s algorithm
can be restored by doubling the length of the
symmetric key to achieve the same protection
compared to classical algorithms [12].

The complexity O(
√
N) of Grover’s algo-

rithm is optimal [13], with a lower bound
estimated at π

√
N

4
and a probability of error at

about 1
N

[14]. This means, there is no substan-
tially faster algorithm for this problem.

Ozhigov shows that, despite the lower
bound of kπ

√
N

4
in the case of k = 1, it is possible

to improve upon this limit by a factor of
√
2,

when the number of targets k ≥ 2, which we
will discuss below [2].

2.3 Ozhigov’s Algorithm
Ozhigov defines three different types of
searches: Iterated Search (IS), Structured Search
(SS), and Repeated Search (RS).

The IS-problem is a sequence of similar
searches S1, S2, ..., Sk where Si is the problem of
finding the unique solution x0

i for the equation
fi(xi) = 1. fi is a Boolean function that is only
accessible if we know all previous solutions to
xi, that we will call xj , where j < i. Further-
more, the lenght of a word |xi| = n, so the
domain is N = 2n. The goal is to find x0

k, with
k ≥ 2 and k � N .

Sequential applications of Grover’s search
algorithm for x0

1, x
0
2, ..., x

0
k give a result after

kπ
√
N

4
applications with an error probability of

k
N

[14]. The oracles f1, f2, ..., fk are dependent
in a way that the oracle fi depends on all
oracles f1, f2, ..., fj where j < i. Such that fi can
be assumed to have the form fi(x1, x2, ..., xi)
and each equality fi(x1, x2, ..., xi) = 1 has the
unique solution x0

1, x
0
2, ..., x

0
i , i = 1, 2, ..., k. It

is required that all oracles fi can be executed
simultaneously.

This allows us to take advantage of the in-
terference between the results of their actions
caused by the leak of amplitude from one
step to the next in the sequential search. The
amplitudes of all solutions xi 6= x0

i decrease,
while the amplitude of x0

i in search number i
increases from one step to the next, such that
it becomes approximately 2l+1√

N
after the first l

steps. This leak of the amplitude can be used
for the next i+ 1-th search.

Ozhigov shows that this effect can be used
to solve the problem with kπ

√
N

4
√
2

queries, which
is
√
2 faster than k sequential applications of

Grover’s algorithm. Ozhigov defines the spe-
cial case k = 2 of IS as the Repeated Search (RS)
problem. [2]

RS is in itself a special case of the Structured
Search (SS) with the cardinality M = 1. Fahri
and Gutmann [15] investigated the case 1 �
M � N and developed a quantum algorithm
in SS with a complexity of O(

√
MN). They



QUANTUM COMPUTING PROJECT REPORT, WISE16/17 3

wrote that the best-known strategy at the time
for the case M = 1 is the sequential application
of Grover’s algorithm. Later Ozhigov showed
that by using the evolution of amplitudes, in-
stead of algebraic properties, the runtime can
be improved by a constant factor of

√
2 [2].

We want to confirm this improvement by
applying Ozhigov’s approach in a quantum
simulator.

3 APPROACH

Ozhigov describes two different representa-
tions: an implementation using differential
equations, and a purely matrix-based imple-
mentation. We will focus on the latter ap-
proach, as it is simpler to work with matrices
in the simulator.

The described approach allows for two tar-
gets, x0 and y0. An operation indicates with the
subscripted character x or y on which target
it operates. The main execution step in the
algorithm is the following equation:

Z = {−WxR0xWxF1}{−WyR0yWyF2}, (1)

or in its expanded form:

Z =

−[(I⊗WxR0xWx⊗I)PF1P ][−(I⊗WyR0yWy⊗I)F2],

where I is the identity, W is the Walsh-
Hadamard transformation on nq pairs of qubits

W = J ⊗ ...⊗ J︸ ︷︷ ︸
nq

, (2)

J is the standard Hadamard transform

J =

( 1√
2

1√
2

1√
2
− 1√

2

)
, (3)

and R0 is the rotation of the target state

R0 |t〉 =

{
|t〉 if t 6= 0,

− |0〉 if t = 0;
(4)

F1 is basically F1 wrapped with P . It is the
crucial step, that allows for the improvement
because it temporarily saves the result of F1 in
the register u. P is defined like this:

P |u, x, y, a〉 = |u⊕ x, x, y, a〉 . (5)

The oracle calls are denoted with F1 and F2:

F1|u, x, y, a〉=

{
|u,x,y,a〉 if x 6= x0,

− |u,x,y,a〉 if x = x0;
(6)

F2|u, x, y, a〉=

{
|u,x,y,a〉 if |x,y〉 6= |x0,y0〉 ,
−|u,x,y,a〉 if |x,y〉= |x0,y0〉 ;

(7)

where u,, x, and y are variables with values
of nq qubits each from three different copies of
H0 = CN . The ancillary qubits are a = a1⊗a2 ∈
C4, with a1 = a2 =

1√
2
(|0〉 − |1〉).

Furthermore, we use the notations f1(x) and
f2(x, y) for two oracles in the repeated quantum
search where x0 and y0 represent the values of
x and y which are unique solutions, such that
f1(x

0) = 1 and f2(x
0, y0) = 1.

4 IMPLEMENTATION

To demonstrate the difference between
Grover’s algorithm and Ozhigov’s version,
we are first explaining the crucial parts of an
implementation of Grover’s algorithm and
then look at the parts modified by Ozhigov.

4.1 Grover’s Algorithm in Python Code
The implementation of Grover’s algorithm con-
sists of an entanglement step using Hadamard
matrices and two diffusion operators enclosing
the call to the oracle. These are applied π

√
N

4
times in order to yield the maximum probabil-
ity. N is the possible number of outcomes.

After initializing the variables, we calculate
the count of steps that yield the highest chance
of returning the correct result:

N = 2∗∗n q
s teps = c e i l ( pi /4∗ s q r t (N) )
I N = I ( [ 2 ] ∗ n q )

n q is the number of qubits used, I N is the
identity matrix and the functions ceil, pi, and
sqrt are imported from the Python math pack-
age.

The variable psi is our quantum register.
Representing gates as matrices allows us to
multiply the matrix of the gate with psi and
write the result back to psi.

Between steps, we can save the current state
of psi for later inspection.
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As step 0 we apply the Walsh-Hadamard
transformation W to entangle the qubits in the
register:

ps i = W( n q )∗ ps i

W(n q) creates the Walsh-Hadamard transfor-
mation matrix, as described in equation 2. It is
implemented in the following function, taking
the desired size (denoted with nq in equation
2) as the parameter s:

def W( s ) :
return MUL(

[ snot ( s , i ) for i in range ( s ) ] ,
)

The resulting values of a call to W(2) and
their further development by applying other
matrices are shown in figure 1.

The call to snot is creating the matrix corre-
sponding to an SNOT-gate. We first create the
SNOT-matrices and then multiply them with
each other. The snot function is the SNOT-gate
imported from QuTiP, and MUL is a helper
function to multiply all elements of a given list:

def MUL( items ) :
return reduce ( mul , i tems )

mul is imported from the Python operators pack-
age. It is similar to applying the operator ⊗
from eg. equation 2.

Z represents the complete circuit for a single
step of Grover’s algorithm. Building this matrix
is a lot more time-consuming than executing a
single step. Table 1 lists the measured running
times. Z is built in the following line:

Z = W( n q )∗R( n q )∗W( n q )∗ o r a c l e

The oracle is a tensor-multiplied identity matrix
where one position on the diagonal has the
value −1. It is built in F for k = 1. For k > 1,
multi target F can be used:

def mult i ta rge t F ( t a r g e t s ) :
return MUL(

[ F ( t ) for t in t a r g e t s ]
)

def F ( t a r g e t ) :
t = [ i n t ( b ) for b in t a r g e t ]
ket = tensor (
∗ [ b a s i s ( 2 , b ) for b in t ]

)
return I N − 2∗ ket ∗ket . dag ( )

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

W(2)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

W(2)*R(2)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

W(2)*R(2)*W(2)

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

W(2)*R(2)*W(2)*oracle
1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Color Scale

Fig. 1: Visualization of the real-valued parts during the construc-
tion of the Z matrix for Grover’s algorithm. In the visualization of
”W(2)*R(2)*W(2)*oracle” we can clearly see the two targets x0 = 0b110
(at 6,6) and y0 = 0b010 (at 2,2) encoded in the matrix.

Grover Ozhigov

n Z Step Z x Z y Z Step

1 3.61 0.11 5.39 4.30 10.04 0.14
2 4.87 0.10 8.82 5.52 14.50 0.14
3 6.56 0.11 15.31 7.04 23.68 0.51
4 8.79 0.11 49.04 25.27 119.47 6.96
5 11.73 0.12 665.19 407.66 2,615.12 158.26
6 16.71 0.22 14,831.57 10,355.53 78,565.33 4,670.43

TABLE 1: Run time per matrix build (”Z”, ”Z x”, ”Z y”) and per
execution of a single step (”Step”) measured in milliseconds, averaged
over 100 repetitions, for each Domain (n). The time measured for
Ozhigov’s Z-matrix does not include the time for building Z x and
Z y. It is purely the operation of Z x ∗ Z y.

The function R returns a matrix of size s to
rotate the target state, similar to equation 4:

def R( s ) :
ket = tensor ( ∗ [ b a s i s ( 2 , 0 ) ]∗ s )
r = 2∗ ket ∗ket . dag ( )
return r − i d e n t i t y ( [ 2 ] ∗ s )

where tensor, basis, and identity are imported
from QuTiP.

After we have built Z once, we can apply
it repeatedly to psi. One multiplication simu-
lates executing one query to the oracle and the
application of all steps in a single iteration of
Grover’s algorithm:

for i in range ( s t eps ) :
ps i = Z∗ps i

To observe how the amplitudes evolve, we save
a copy of psi after each step. A visualization can
be seen in figure 6.

4.2 Modifications according to Ozhigov
For simplicity reasons, we are only considering
the case k = 2 for Ozhigov’s algorithm, such
that we have 2 targets: x0 and y0.

During the execution, we need to apply some
gates only to part of our quantum register psi.
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Thus we have to tensor-multiply them with
the identity matrices of the other register parts.
Therefore, we first create these identity matri-
ces to have them available for handy access:

I U = i d e n t i t y ( [ 2 ] ∗ n )
I X = i d e n t i t y ( [ 2 ] ∗ n )
I Y = i d e n t i t y ( [ 2 ] ∗ n )
I N = tensor ( I U , I X , I Y )

n is again the size of the domain. I U stands
for the identity matrix of the ancillary register,
I X for the identity matrix of the registers of
the x target, and I Y for the identity matrix of
the registers of the y target. I N is the identity
matrix for all registers combined. The identity
and tensor functions are imported from the
QuTiP library.

Next, we have to create the Z matrix de-
scribed in equation 1. We first build two sepa-
rate matrices, Z x for the x target and Z y for
the y target and combine them at the end:

def build Z ( ) :
return build Z x ( ) ∗ build Z y ( )

The development of values in the matrices is
visualized in figure 2.

The build Z y function is similar to the way
we built Z in the implementation of Grover’s
algorithm.

def build Z y ( ) :
return (

W Y( ) ∗R Y ( ) ∗W Y( ) ∗ F 2 ( )
)

W Y() and R Y() are similar to W() and R() in
the implementation of Grover’s algorithm. The
suffix Y indicates that they are only applied
to the quantum registers of the y target.

The W Y and W X functions are creating
a Walsh-Hadamard transform matrix with the
size of the quantum register. They are applied
and are then tensor-multiplied with the iden-
tity matrix of the other registers.

W Y = lambda : t ensor ( I U , I X ,W(Y ) )
W X = lambda : t ensor ( I U ,W(X) , I Y )

By comparing W Y and W X, we see that they
have to be tensor-multiplied in the correct or-
der so that they only affect their corresponding
target qubits.

The rotation step R() is changed to only be
applied to the corresponding register as well.
To set all other positions in the matrix to 0, we
subtract the identity matrix at the end as can
be seen in the following listing:

def R X ( ) :
ket = tensor ( ∗ [ b a s i s ( 2 , 0 ) ]∗X)
r = 2∗ ket ∗ket . dag ( )
return t ensor ( I U , r , I Y ) − I N

def R Y ( ) :
ket = tensor ( ∗ [ b a s i s ( 2 , 0 ) ]∗Y)
r = 2∗ ket ∗ket . dag ( )
return t ensor ( I U , I X , r ) − I N

The tensor and basis are imported from QuTiP.
The y part of the oracle is defined in F 2 like

in equation 7:

def F 2 ( ) :
f = F ( t a r g e t y )
return I N − t ensor ( I U , I X , f )

Where target y is a string of 1s and 0s describ-
ing the target y0 and F the same as in the
previous section.

The x part of Z is built similarly to the y part:

def build Z x ( ) :
return (

W X( ) ∗R X ( ) ∗W X( ) ∗P ( ) ∗ F 1 ( ) ∗P ( )
)

F 1 is the x part of the oracle, that is im-
plemented similarly to the F 2 function, as
described in equation 6:

def F 1 ( ) :
f = F ( t a r g e t x )
return I N − t ensor ( I U , f , I Y )

The differences and similarities are obvious
when looking at the order in which the u, x,
and y matrices are multiplied and how they
are built into a matrix that can be applied to
the quantum registers.

The last missing part is the P function de-
scribed in equation 5. It is responsible for XOR-
ing the qubits corresponding to the x target and
the ancillary qubits:

def P ( ) :
z = zip ( qx , qu )
return MUL(

[ xor ( n q , c , t ) for c , t in z ] ,
)



QUANTUM COMPUTING PROJECT REPORT, WISE16/17 6

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_X()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_X()*R_X()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_X()*R_X()*W_X()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_X()*R_X()*W_X()*P()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_X()*R_X()*W_X()*P()*F_1()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_X()*R_X()*W_X()*P()*F_1()*P()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_Y()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_Y()*R_Y()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_Y()*R_Y()*W_Y()

0 10 20 30 40 50 60

0

10

20

30

40

50

60

W_Y()*R_Y()*W_Y()*F_2()
1.0

0.8

0.6

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

-1.0

Color Scale

0 10 20 30 40 50 60

0

10

20

30

40

50

60

build_Z_x()*build_Z_y()

Fig. 2: Real values during the construction of the Z matrix for Ozhigov’s algorithm. By comparing the matrix of ”W X()*R X()*W X()” to
”W X()*R X()*W X()*P()*F 1()*P()” we can see how the target x0 = 0b11 has been encoded in the matrix. Similarly we can see that encoding
of the target y0 = 0b01, when comparing ”W Y()*R Y()*W Y()” to ”W Y()*R Y()*W Y()*F 2()”.

Where xor is the CNOT-gate from the QuTiP
library and the variables qx and qu are arrays
holding the indices of the quantum registers
used for the qubits of x and u.

5 EVALUATION

For evaluation, we compare the probability
development of Grover’s and Ozhigov’s algo-
rithm for targets of different lengths. However,
there are some limitations and peculiarities we
have to consider.

5.1 Simulator Peculiarities
As can be seen in table 1, the measured execu-
tion times for Ozhigov’s algorithm are substan-
tially higher than for Grover’s algorithm. The
reason behind this is, that Ozhigov’s algorithm
uses more qubits and the simulator cannot ben-
efit from quantum parallelism as it has to do all
calculations explicitly. Therefore comparing the
execution times is not subject to this evaluation.
However, since all underlying amplitudes have
to be calculated in the simulator, we are able to
observe them and therefore the resulting prob-
abilities, unlike on a real quantum computer.

5.2 Visualization Compression
The matrix-histogram plots of the probability
development have too many values to be dis-
played in their entirety. To focus on the crucial

parts they have been compressed using run-
length encoding along the axis of outcomes. It
is applied up to two times. Firstly, if a repeating
pattern over a stable period is identified, its
first occurrence is plotted normally and all the
following occurrences are replaced by a sym-
bolic flat line with a label like this ”repeats 705
times...”. Secondly, whenever the probabilities
of more than 3 consecutive entries are the same,
they are replaced with 3 symbolic entries and
labeled with the first label, the last label, and
a label in the middle indicating the number of
skipped outcomes, eg. ”... 22 ...”.

5.3 RAM Limitations
The number of values we need to store for the
quantum register is 2nq , with nq being the num-
ber of qubits. Each value is a complex number,
so we need 128 bit or 16 byte per value. We
need (2nq)2 · 16 byte of RAM to perform an
operation on an nq-qubit vector. Our machine
has 32 GiB of RAM, this allows us to simulate
a system with up to 16 qubits if the values are
stored in dense matrices, see table 2. However,
it is possible to simulate systems with a higher
number of qubits if the matrix can be stored in
sparse matrices. Ozhigov’s algorithm requires
3 · |x0| qubits, but since the matrices represent-
ing the gates can benefit greatly from the space-
saving through the use of sparse matrices, we
can simulate it for a domain described by up
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nq RAM

1 16 B
2 64 B
3 256 B

nq RAM

4 1 KiB
5 4 KiB
6 16 KiB
7 64 KiB
8 256 KiB

nq RAM

9 1 MiB
10 4 MiB
11 16 MiB
12 64 MiB
13 256 MiB

nq RAM

14 1 GiB
15 4 GiB
16 16 GiB
17 64 GiB
18 256 GiB

TABLE 2: RAM required for operating on nq qubits with dense
matrices. Depending on the nature of the data, using sparse matrices
can greatly lower the RAM requirement, as can be seen in table 3.

Domain Grover Ozhigov

n nq Expected Measured nq Expected Measured

1 bit 1 16 B 94 MiB 3 256 B 94 MiB
2 bit 2 64 B 94 MiB 6 16 KiB 94 MiB
3 bit 3 256 B 94 MiB 9 1 MiB 95 MiB
4 bit 4 1 KiB 94 MiB 12 64 Mib 117 MiB
5 bit 5 4 KiB 94 MiB 15 4 GiB 777 MiB
6 bit 6 256 KiB 94 MiB 18 256 GiB 20 GiB

TABLE 3: Amount of RAM used for different number nq of qubits.
Comparing the Expected (using dense matrices) and Measured (using
sparse matrices) results for Grover’s and Ozhigov’s algorithm. The
measured results were averaged over 100 runs.

to 6 bits. The measured memory requirements
for both, Grover’s and Ozhigov’s algorithm are
shown in table 3. Note that the required RAM
does not seem to increase for a small number
of qubits, as it is shadowed by the amount of
RAM used by the python process itself.

5.4 Grover’s Algorithm With a Single Target
Figure 3, 4, and 5 visualize the development
of probabilities during a run of Grover’s algo-
rithm. We get the probability by squaring the
amplitudes of the recorded intermediate states.

The input is the following oracle:

f(x) =

{
1 if x = 24,

0 otherwise;

Simply put, the target outcome is 24. In binary
representation 0b11000. Figure 3 visualizes the
probabilities after the initial entanglement of
all qubits before any Grover operation has
been performed (step=0). All outcomes have
the same amplitude and therefore the same
probability of being returned as the result if
we would perform a measurement at this step.
After the first Grover operation (step=1), the
probability of the target outcome is higher than
the probability of any other outcome. The tar-
get outcome of 0b11000 would only be observed

n Grover (k=1)
Ozhigov (k=2)

Grover (k=2)
Ozhigov (k=2)

3 2.56
1.64
≈ 1.10

√
2 4.00

1.64
≈ 1.73

√
2

4 4.23
2.42
≈ 1.23

√
2 5.12

2.42
≈ 1.49

√
2

5 6.64
3.73
≈ 1.26

√
2 8.46

3.73
≈ 1.60

√
2

6 9.80
5.39
≈ 1.29

√
2 13.28

5.39
≈ 1.74

√
2

TABLE 4: Speedup-factor calculated by dividing the average number of
expected queries for Grover’s algorithm by that number for Ozhigov’s
algorithm. The result is given as a factor of the expected lower bound
of
√
2. The values can also be seen in figure 14 and 15.

in 68.75% of cases at this point. The probability
of the target outcome increases with each step
until it reaches its maximum after 3 iterations
of the Grover algorithm. Step number 3 is also
the step closest to the expected number of
steps to achieve the highest probability for the
correct result

⌊
π
√
16

4

⌉
= 3. Therefore, the results

of our implementation of Grover’s algorithm
confirms the expected runtime of O(

√
N).

5.5 Grover’s Algorithm With Two Targets
To reconstruct the claim made by Ozhigov, we
have to evaluate the behavior when the oracle
has two possible solutions and we want to find
both. We have two different cases: the first is
one oracle with two different targets and the
second is two independent oracles with each
having a single target.

For example taking 8 and 24 as target out-
comes, or in binary representation 0b01000 and
0b11000. For the first case we design our oracles
to look like this:

f(x) =

{
1 if x = 8 or x = 24,

0 otherwise;

For the second case, the two independent
oracles would look like this:

fx(x) =

{
1 if x = 8,

0 if x 6= 8;
fy(x) =

{
1 if x = 24,

0 if x 6= 24;

5.6 Ozhigov’s Algorithm With Two Targets
Now we are applying the algorithm described
by Ozhigov to check if it offers a speedup of
at least

√
2 over the algorithm described by

Grover. The number of iterations for the high-
est probability of success k

N
can be calculated
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the initial entanglement.
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In figure 9 the denominatior d = 8
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2 was chosen, as it is a solution for the equation sin(x 5π

√
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with kπ
√

N
k

4
. As an example, we will examine

the case k = 1 and N = 25 = 32 with a perfect
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oracle, which always returns the same output
for the same input. Namely 1 if the input is
equal to x0 and 0 if the input is not equal
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Fig. 14: Zoomed-in: steps 1–20 and Grover (k=1) vs Ozhigov.
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Fig. 15: Zoomed-in: steps 1–20 and Grover (k=2) vs Ozhigov.

Fig. 16: Figure 13 shows the average expected number q of total queries (x-axis), if execution of a run is stopped after l steps (y-axis). Figure
14 and 15 show a zoomed-in version of the case Grover (k=1 and k=2) separately. These values and the resulting speedup-factor are listed in
table 4. The reason n=1 and n=2 have been excluded is that we need k � N , because the behavior for small values of n (and therefore small
values of N = 2n), is not on par with larger values. A simple example is the case of n=1 and k=2, where the whole domain is made up of two
values: 0b0 and 0b1, of which both would be targets.

to x0. After π
√
N

4
or about 4.442 iterations, the

chance for error is the lowest with 1
N

= 3.125%.
However, in the case that we are unlucky the
algorithm returns a result x 6= x0. Fortunately,
we can confirm whether the result is correct by
giving it as input to the oracle and check if it
returns the value 1. In case it returns the value
0 we know that we were unlucky and have to
run the algorithm again.

Figure 5 shows that the probability for mea-
suring the correct result is rising with every
step j for 1≤j≤4. Therefore, we can stop early,
query the oracle with the returned result, and
run the algorithm again if the oracle returns 0.
This strategy was described by Boyer et al. [14].
We use it to calculate the optimal number of

steps to get the minimum expected number of
queries until success. This number, if we have
to re-run the algorithm, is k·l

√
N
k

, with l being
the step we chose to stop at.

After each step, we determine the ampli-
tude of the target register by executing the
algorithm in the simulator and then calculate
the expected number of queries. To get the
speedup Ozhigov’s algorithm provides, we can
determine the expected minimum number of
queries for different domain sizes and calculate
the speedup-factor.

Table 4 and figures 13, 14, and 15 show the
results for the expected number of queries to
perform, if we stop each run of the algorithm
after a specific step and re-run it if the result
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is not a solution for the oracle. The smallest
count of steps is marked for each algorithm.
The resulting speedup-factors relative to the
expected factor of

√
2 is listed in table 4.

As can be seen in figure 14 and 15, for
each evaluated domain, described by 3 or
more, bits we measure a speedup-factor greater
than the lower bound of O(

√
2) claimed by

Ozhigov. Therefore, we confirm, that the ex-
pected speedup was achieved.

6 RELATED WORK

In contrast to our implementation on a quan-
tum simulator there are also implementations
on real devices, which are done eg. by Jones
et al. who implemented a quantum search
algorithm on a nuclear magnetic resonance
quantum computer [16] and by Mandviwalla et
al., who have demonstrated that it is possible
to execute Grover’s search algorithm on the
quantum computer offered by IBM [17].

Ross et al. modified Grover’s algorithm for
a fast database search [18], Farhi et al. investi-
gated the square root speedup in SS-problems
[19], and Hogg et al. developed a framework
for structured quantum search [20].

7 CONCLUSION

7.1 Summary
We implemented Ozhigov’s algorithm, which
speeds up Grover’s algorithm for the specific
case of k = 2 by searching for both targets in
parallel. We measured the running time, RAM
requirements for up to 18 qubits, and deter-
mined the minimum number of queries. We
calculated the speedup-factor and confirmed
that Ozhigov’s algorithm achieves the claimed
speedup by a factor of at least

√
2.

7.2 Outlook and Future Work
Instead of using a quantum simulator, the next
step could be to use an actual quantum com-
puter. Several institutions offer access to their
quantum systems. However, Mandviwalla et
al. have observed that a high error rate is caus-
ing difficulties to execute Grover’s algorithm
for 4 qubits effectively [17]. Since Ozhigov’s

algorithm needs 3 times the number of qubits
the technology will most likely need more im-
provements, regarding the error rate, until we
can confirm the results that we observed in the
simulator on a real quantum computer.
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