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Heye Vöcking

A thesis submitted to the
Faculty of Electrical Engineering and Computer Science
of the
Technical University of Berlin
in partial fulfillment of the requirements for the degree
Master of Computer Science

Berlin, Germany
Tuesday 30th March, 2021



Main supervisor:

Prof. Dr. habil. Odej Kao, Technical University of Berlin
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Zusammenfassung

Das gesteigerte Bewusstsein für die Privatsphäre des Einzelnen in der digitalen Welt
hat einerseits durch das immer häufiger festzustellende Blockieren von Drittanbieter-
Cookies und andererseits durch das Inkrafttreten der neuen europäischen Datenschutz-
grundverordnung (DSGVO) das Internet im Allgemeinen und die Online-Werbeindus-
trie im Besonderen inhärent verändert. Unter diesen Bedingungen wird die herkömm-
liche Vorgehensweise des Trackings über Nutzerprofile zunehmend schwieriger. Diese
Thesis stellt einen alternativen Ansatz für die Vorhersage von Alters- und Geschlechts-
segmenten eines Nutzers vor: Beim Anwenden der Bluestreak-Methode verbleiben die
sensiblen Daten auf dem Gerät des Nutzers und nur die anonymen Segmentvorher-
sagen werden an den Server zurückgeschickt. Unsere Methode unterscheidet sich
von gängigen Ansätzen dadurch, dass die Erfassung der benötigten Daten und die
Vorhersage der gewünschten Segmente in den Browser des Nutzers verlagert werden.
Dieser Ansatz ist unabhängig von Tracking-Cookies und wahrt so die Privatsphäre des
Nutzers. Weiterhin zeigt die durchgeführte Evaluation auf der Basis von realen Daten
der Online-Werbeindustrie, dass Bluestreak in der Lage ist, die Genauigkeit der Vorher-
sage im Vergleich zu einem ausschließlich auf dem User-Agent basierenden Ansatz zu
verbessern, ohne die User-Experience im Browser maßgeblich zu beeinflussen.





Abstract

The growing awareness of privacy in the digital world has not only made the block-
ing of third-party cookies more common but also introduced major regulatory changes
through the new European General Data Protection Regulation (GDPR). This regula-
tion has inherently changed the Internet in general and the online advertising industry in
particular: under these conditions, the traditional approach of tracking via user profiles
is becoming increasingly difficult. In this thesis, an alternative approach for predicting
age and gender segments of a user is proposed. With the presented Bluestreak method,
the sensitive data remains on the user’s device and only the anonymous segment pre-
dictions are sent back to the server. It differs from common approaches in that the
collection of the required data and the prediction of the desired segments is shifted to
the user’s browser. This approach is independent of tracking cookies and thus preserves
the user’s privacy. We conducted an evaluation on a real-world data set and show that it
is possible to improve the prediction accuracy for age and gender segments compared
to a User-Agent-based approach while only posing a low overhead on user’s devices.
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1
Introduction

The Internet is arguably the most impactful change to society in the last 20 years. As

with every black swan event, it brought unforeseen consequences, not all contributing

to the good of its users. One of these is the ever-growing amount of data voluntarily,

often unknowingly, provided by consumers1 and collected by advertisers. Modern

hardware and algorithms allow internet companies to track users through the Internet

and build detailed user profiles. This enables advertisers to target their ads at consumers

that may have an interest in their product and exclude those that may be distracted by

this particular ad, which is in the interest of the consumer as well as the advertiser

[11, 67]. This impacts the consumer’s privacy because of the personal data that is

shared with the advertisers. Due to this development, the interest in privacy retaining

approaches has risen over the last years [1, 33]. This motivates the development of

new methods that protect the consumer’s privacy and retain the advertiser’s ability to

identify potentially interested consumers.

A complex step in predicting consumer segments is determining the consumer’s in-

terests: it either involves the collection of hard-facts (consumer-provided information)

1 In this thesis, the term consumer is used when talking about an internet user that consumes content
without paying for it directly. The production and delivery of this content are financed by the revenue
generated by selling online advertising spaces generated on the pages this user visits.

1



2 Chapter 1. Introduction

or deriving segments from other data points available about the consumer. Deriving

segments from data is non-trivial because the consumer data is often fuzzy or incom-

plete. Advertisement companies typically can improve their knowledge by building

a model about a big group of consumers, allowing them to predict the interests of a

specific consumer. This is done by feeding the available data of that specific consumer

to the model to generate a prediction for the user segment. Typically machine learning

algorithms like logistic regression are used to build such a model.

The recent introduction of the General Data Protection Regulation (GDPR) strictly

limits which and how data can be used for this. This made analyzing consumer behav-

ior a more challenging task, due to the restrictions on processing personal data.

In the past, the advertising industry was allowed to neglect privacy concerns when

doing consumer analysis. For the advertiser, the most important performance indicator

is the revenue increase achieved through advertising. Providing relevant ads while

maintaining consumer privacy would be a win-win situation, where advertisers reach

consumers that want to buy their products, while consumers get content free-of-charge,

provide a revenue stream for the content producer, and keep their privacy.

This thesis introduces a novel privacy-aware approach that allows advertisers to

reach their target audience under the observation of consumer privacy. This is ac-

complished by identifying relevant features for age and gender prediction from a real-

world data set and training a logistic regression model based on the values of these

features. For that, a model-based predictor was developed in JavaScript, which is exe-

cuted in the consumer’s browser. This allows to only send back the prediction results,

while the data that is used to perform the prediction stays on consumer’s devices. Our

privacy-enhancing approach was evaluated and compared against a User-Agent-based

approach.

In summary:

⇧ we identified relevant features for age and gender prediction

⇧ we built a logistic regression model from the identified features

⇧ we compared the model performance against the state of the art
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⇧ we performed a case study to evaluate the quality of experience (QoE) when

applying the prediction directly on the device

This thesis is structured as followed: real-time bidding (RTB), consumer segments,

and logistic regression are introduced in Chapter 3. Technical, legal and, privacy re-

quirements are treated in Chapter 4. Chapter 5 describes the tools and techniques that

were used to put this idea into action and Chapter 6 presents and analyses the results.





2
State of the Art

This chapter presents the current state of the art and related work that has motivated

and informed this thesis. It first introduces a short overview of the origins of Real-

Time Bidding, which became the most popular channel for online advertising in recent

years. Then a short introduction to research regarding privacy concerns in the adver-

tising realm is given and recent advances in the field of privacy preservation methods

in the field are explored. Finally, related work in age and gender segment prediction is

presented.

Real-Time Bidding

Real-Time Bidding (RTB) RTB is considered the most significant progress in recent

years in online display advertising [68, 69]. It was introduced in 2008 by a company

named BlueKai, to enable advertisers to make use of demographic data available about

customers [17]. While on TV or billboard ads each person sees the same ad, RTB

allows selecting the advertisement for each person individually. BlueKai started with

advertisers in the travel industry, such as Kayak and Expedia, who wanted “to advertise

to individual consumers”, allowing to target those customers who were thought to be

5



6 Chapter 2. State of the Art

able to afford the advertised trip [59]. This new user-centric approach, also called

personalized advertising [14], enabled the application of new research opportunities

such as reinforcement learning and logistic regression.

Reinforcement Learning

Cai et al. [10] proposed a model-based reinforcement learning model to optimize ad-

vertising performance. They built a Markov decision process framework for learning

the optimal bidding policy and demonstrated that their solution is superior to other

state-of-the-art methods. Furthermore, they proposed a neural network model to solve

the scalability problem caused by the large real-world they used.

Wang et al. [70] used a deep reinforcement learning agent (named LADDER) on a

real-world data set provided by the JD.com e-commerce platform. They demonstrated

that their approach outperformed JD.com’s human expert calibrated real-time bidding

policy.

Yang et al. [74] propose a multi-objective reinforcement learning algorithm (named

MoTiAC), which computes adaptive weights over time. They show that their method

outperforms other state-of-the-art methods on a real-world commercial history data set.

Zhao et al. [77] propose a reinforcement learning framework in the sponsored

search realm. Sponsored search differs from regular display advertising in that it also

includes a user query with keywords. They deployed their solution on the e-commerce

platform Alibaba. Their evaluation includes offline as well as online A/B testing and

shows that their method is effective.

Logistic Regression

Szwabe et al. [63] investigated the impact of stochastic gradient descent parameter

tuning and performed an experimental offline evaluation of leading logistic regres-

sion approaches in Click-Through Rate (CTR) estimation. They conclude that the L2-

regularized logistic regression is the state-of-the-art RTB CTR estimation.
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Privacy

Data analytics and its implications on privacy has become a main concern in online

advertising in recent years [18, 56]. Several works that have focused on this topic will

be introduced in this section.

Johnson et al. [27] have studied consumer privacy choice enabled by the AdChoices

program. They found that only 0.23% of American ad impressions arise from opted-

out users and report similar rates for users from the European Union and Canada. This

shows that the option of opting out through the AdChoices approach is rarely used.

Therefore, a development to a privacy by default approach would benefit all consumers

and not only those who actively chose to opt-out.

Chaudhry et al. [13] discussed practices of customer data collection and usage

within targeted advertising and looked into the implications on ethics behind this method

of advertising. They conclude that many of the current data-privacy collection methods

are not ethical, but that ethical data collection methods may exist in the future. This

means that advances in the field of data-privacy are a relevant area for advances in the

industry.

Wieringa et al. [72] argue that data analytics and privacy are not necessarily con-

tradictory. They conclude that data control and responsibility should move to the cus-

tomer, as this provides superior privacy protection. Therefore, it seems that the ap-

proach taken in this thesis goes in the right direction regarding privacy protection.

Privacy Preservation

Qi et al. [51] used Locality-Sensitive Hashing (LSH), to perform recommendation

decisions in a privacy-preserving manner. They report that using LSH achieves a good

tradeoff between recommendation accuracy and efficiency while guaranteeing privacy-

preservation.

Osia et al. [45] built a hybrid deep learning architecture, where they split a neural

network in a way that one part (the first layers of the neural network) are deployed

to the “edge”, on Internet-of-Things (IoT) devices, doing the first part of processing

and only then send the output of these first layers of the neural network from the IoT
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devices back to the cloud to do the remaining processing. While they are splitting up

the neural network and send partially processed data back to the cloud, in this thesis,

the whole model is sent to the “edge” and only the final output (the predicted consumer

segments) are sent back.

Toubiana et al. [65] propose an architecture that, similar to our approach, enables

targeting without compromising user privacy by performing behavioral profiling and

targeting in the user’s browser. They use a cosine-similarity matrix between tags on

the website and words in Google AdsPreferences categories for profiling and targeting.

Backes et al. [5] built an online behavioral advertising system (named ObliviAd)

that preserves user privacy through encryption, such that the broker side does not get

any personal information of the user profiles. Their method still allows selecting ad-

vertisements that fit the user profile and therefore does not impose a penalty on ad

revenue.

Reznichenko et al. [57] deployed a prototype of a fully functional privacy-preserving

behavioral targeting system. Their userbase had a size of about 13K opted-in users and

they reported their Click-Through Rates to be comparable with those for Google dis-

play ads.

Federated Learning

While the approach presented in this thesis is based on a data set that is used for training

the model once at the beginning, a technique called federated learning was created

in recent years [8], which allows training the model continuously. While federated

learning is not privacy-protecting by design, methods that allow keeping the model up-

to-date while preserving the consumer’s privacy have been discussed in other works:

Ammad-ud-din et al. [3] built a personalized recommendation system using a mas-

ter machine learning model which is distributed to user clients, where locally stored

data is used for inference and model updates which are then sent to update the master

model. The updated model is then redistributed. This way, user privacy is preserved

because user data never leaves the client.

Bonawitz et al. [6] discussed secure aggregation protocols, which allow multiple

parties to collaboratively compute several private values to a sum, without revealing
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these private values using deep neural networks in a Federated Learning model.

McMahan et al. [36] learned differentially private recurrent language models, that

add user-level privacy protection to the federated averaging algorithm, that makes

“large step” updates from user-level data.

Age and Gender Prediction

Al-Zuabi et al. [2] proposed a method to predict a users’ age and gender, based on

behavior information sourced from mobile phone data. They used a data set of 18,000

users and achieved an 85.6% accuracy in terms of user gender prediction and 65.5% of

user age prediction. The predictions are intended to be used for marketing campaigns.

Similar to this thesis, the age and gender prediction was intended to be used for mar-

keting purposes and the size of the data set is also comparable. However, instead of

using data collected from the device, the data was based on mobile phone data. With

the approach of Al-Zuabi et al., the achieved accuracy was higher than the accuracy

achieved with the approach discussed in this thesis.

In contrast to this thesis, which uses logistic regression, Nguyen et al. [43] used

linear regression to predict an author’s age from their blog posts, telephone conversa-

tions, and online forum posts. They achieved absolute discrepancies between 4.1 and

6.8 years. As this thesis is discussing prediction for age segments that span 10 years,

it is difficult to compare their results to ours directly, however, their results show that a

regression algorithm is suitable for an age prediction task.





3
Background

This chapter introduces the applied methods, and the online advertising business model

focusing on Real-Time Bidding. It explains consumer segments, introduces the logis-

tic regression algorithm, and combines them to perform segment prediction. Then it

describes the state-of-the-art approaches to predict consumer segments. Table 3.1 is a

glossary of terms used in this thesis.

3.1 Real-Time Bidding

In Real-Time Bidding (RTB), the content of online advertising banners, are auctioned

to bidders on an advertising exchange. It is called an impression when an advertising -

short ad - is shown to a user [39]. RTB is the interface between the Demand-Side, the

advertisers advertising a product, and the Sell-Side, the publishers generating revenue

through displaying these ads to consumers, see 3.1. The Supply-Side Platform (SSP) is

an RTB server which connects to several Demand-Side Platform (DSP) as RTB clients

[52, 73]. A DSP distributes creatives, provided by advertisers paying to reach con-

sumers to boost their brand or to induce conversions by incentivizing the DSP [15, 32].

The advertiser orders the DSP to run an advertising campaign and provides a budget to

11



12 Chapter 3. Background

Term Description

Publisher Websites, apps, or content creators in general, publishing media
to consumers

Consumer A user, consuming content, viewing ads and buying advertised
products.

Advertiser Company selling products and adverstising.
Creative An ad that is displayed on a publishers website, eg. a banner-ad
Impression Event of the consumer’s device loading and displaying the creative
Click Event of the consumer clicking on the displayed creative
Conversion Event of the consumer taking the advertised action

(eg. buy, signup, etc.)
Client device Device the consumer uses to browser the web
Pixel Invisible content in publisher’s and advetiser’s site to track

consumers
SSP Supply Side Platform
DSP Demand Side Platform
Segment A grouping based on age (eg. “20-29”) or gender (“F” or “M”)
Hard-fact Information originating from the consumer, eg. during a sign-up

process

Table 3.1: Glossary with key terms used throughout this thesis.

reach the desired count of impressions, clicks, or conversions.

The DSP buys impressions on the SSP, where a first-price auction, the highest bid-

der pays the price of its bid or second-price auction, the highest bidder pays the price

of the second-highest bid, is performed [75].
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Figure 3.1: An overview of how RTB connects an advertiser with a consumer.
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Figure 3.2: Workflow chart of an RTB interaction with a consumer, a publisher, an SSP, and a DSP.
Server 1, 2, and 3 are just symbolic for different realms that may consist of multiple servers.

The RTB market has been growing steadily in recent years from 0.35 Billion EUR

in 2014 to 1.58 Billion EUR in 2018 in Germany alone1. RTB increased its ad spend

market share from 11.57% in 2014 to 61.39% in 2018 (see Figure 3.52) and is, there-

fore, the main channel for distributing online advertising [44, 61].

As the term real-time suggests, the auction is happening while the consumer is

waiting for the website to load. As seen in Figure 3.2 the typical workflow in an RTB

system starts with the consumer opening a website. This site can, for example, be

the website of a publisher, such as an online news site. The HTML returned by the

publisher’s server contains a small piece of JavaScript that triggers a GET request to an

SSP, the ad exchange. The ad exchange then sends a bid request, eg. an HTTP-Request,

to all connected bidders to request their bid for this particular impression. It then awaits

a response containing the bid price with a timeout of usually 100 milliseconds. The

highest bidder will then win the auction. The response to the client then contains the

impression of the winning bidder. The user’s browser then renders this impression.

From the user’s perspective, this all happens while the page is loading [40].

1The amount for 2018 is a projection, as presented in [61]
2Data for total money spent on RTB advertising in Germany is originally in USD, but was converted

to EUR with a conversion rate of 1 EUR = 1.2455 USD for 2014 and 1 EUR = 1.1482 USD for 2018
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Figure 3.3: Advertising Spending in 2014.
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Figure 3.4: Advertising Spending in 2018.

Figure 3.5: Total money spent on online advertising in Germany, separated into the non-RTB and the
RTB share in million EUR [44, 61].

When the RTB client receives a bid request, the DSP identifies the most valuable

campaign for this consumer, because the chance of winning increases with the price.

To determine the price it is willing to bid, the DSP needs to predict the probability of

a consumer performing the desired action (impression, click, or conversion) [12, 23,

58, 76]. These can be expressed as consumer segements, described in Section 3.3.

If segments based on hard-facts are unavailable, they can be predicted, described in

Section 3.4.

3.2 Logistic Regression

Logistic regression is considered state-of-the-art in the field of real-time bidding [63].

A logistic regression model can be used to estimate the probability that a user i is part

of a segment or not, which is indicated as yi = 1 and yi = 0, respectively [24]. Each

user has a feature vector xi 2 Rp, which contains known information about this user,

such as the device model and browser. The conditional probability is then given by

P(yi = 1|xi) =
1

1+ exp{�(b0 +Âp
j=1 b jxi, j)}

(3.1)
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with b0, . . . ,bp as parameters that can be estimated based on observed data [28].

We assume a linear relationship between the predictor variables and the log-odds

(denoted `) of the event that yi = 1:

`= b0 +
p

Â
j=1

b jxi, j. (3.2)

When all b j are fixed, it is possible to compute either the probability that yi = 1 or

the log-odds that yi = 1 for a given observation.

As an example, a vector with two features is assumed: (xi,1,xi,2). The trained

logistic model is then used to estimate the probability that yi = 1 given the feature

vector. The event yi = 1 can, for example, represent a consumer’s gender to be female.

The feature xi,1 represents the amount of RAM the consumer’s device is equipped with,

normalized in the range [0,1] and xi,2 is a binary value, which is 1 if the consumer is

using an Android phone and 0 otherwise. The following values for b0,b1, and b2 are

assumed:

⇧ b0 = 0.5, this is the y-intercept, the log-odds of the event that yi = 1 when xi,1 =

xi,2 = 0. Therefore, the odds of the event yi = 1 are 1-to-2, or 1
(1+10.5)

= 1
3 .

⇧ b1 =�0.25, this means a higher amount of RAM decreases the log-odds.

⇧ b2 = 2, this means having an Android phone increases the log-odds by 2.

The number of parameters p is often very large in practice which would lead to

overfitting [62] and thus, L1 regularization is applied, which shrinks the parameter

space. This has the additional advantage, in comparison to the often used L2 norm,

that the resulting number of parameters is lower [42], which yields a smaller model.

This is very favorable for this thesis as the model in our approach is sent to the user’s

browser.

L1 Regularization

L1 Regularization, also called Lasso, an acronym for “least absolute shrinkage and se-

lection operator”, is a method used in regression analysis to perform variable selection
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and regularization. It improves prediction accuracy and interpretability of the logistic

model by changing the model fitting process selecting only a subset of the provided

covariates for use in the final model [42].

It allows adjusting the regularization strength with a parameter l or C [55]. The

best value for this parameter is not trivially chosen, so a form of grid-search with cross-

validation has to be used, to probe which value delivers the best results. How this was

done in this thesis is described in Section 5.1.2.

3.3 Consumer Segments

The consumer segments treated in this thesis are a form of market segmentation, called

demographic segmentation. Market segmentation separates a heterogeneous market

into homogenous segments [9]. Demographic segmentation is based on demographic

profiling, which considers parameters such as age, gender, income, educational attain-

ment, etc., to categorize the consumers into segments. Among these segments, age and

gender are the most most common targeting option [71]. This assumes that consumers

in the same segment have similar purchasing patterns translating into similar product

or brand preferences.

By combining several segments, it is possible to target a narrow rel group through

few carefully chosen segments [52].

As advertisers design campaigns for a certain demographic profile, the ability to

target such segments directly benefits the advertiser. Conversely, fewer consumers in

irrelevant segments will see this ad. As a result, the advertiser spends less money while

untargeted consumers are not distracted by an irrelevant ad [16].

3.4 Segment Prediction

If no hard-fact data about a consumer is available one can resort to predicting demo-

graphic segments for a consumer individually. This is done by building a model from

data of other known consumers and using it to predict segments for an unknown con-

sumer [71].
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Machine learning algorithms such as logistic regression can be used to predict the

probability of a binary event, like a consumer belonging to a particular segment or not.

Deciding on a consumer’s gender is straightforward as we have a binary classification

case3. It gets however more difficult when it comes to predicting which age segment a

consumer belongs to.

Because we are doing the prediction for each segment independently, the classifier

may return True for more than one of the five age segments. Instead of using the binary

outcome, we can however use the confidence value and rank the results for each age

segment prediction. This allows us to pick the segment with the highest confidence.

3.5 Server-Side Segment Prediction

Historically, in contrast to the approach proposed in this thesis, segment prediction

was focused on doing the prediction process on the server instead of on the consumer’s

device. In the following, two widely applied approaches for such predictions are dis-

cussed in more detail.

Server-Side Segment Prediction with Cookies

In the past, tracking cookies were placed on consumer’s devices to record their jour-

ney through the internet. This thesis calls this the “Cookie-based approach”. This

uses third-party cookies on partner sites. Cookies are small pieces of data stored in the

user’s browser, separated by domain, to hold stateful data between browsing sessions.

This cookie is sent to the server when a website is opened. This allows to identify a pre-

viously seen user and enables tracking by recording a user’s history [53]. A first-party

cookie, also called “same-site” cookie, is only sent if the domain of the cookie matches

the domain in the browser’s address bar. A third-party cookie, also called “cross-site”

cookie, can be sent even if the domain does not match the one displayed in the address

bar. Therefore, advertisers have been using third-party cookies on partner websites to

perform cross-site tracking. This lead to an increasing share of consumers disabling

3In this work we are only considering the female and male gender, as the hard fact data we are using
for training does not contain any non-binary gender datapoints
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third-party cookies in recent years, and several browsers such as Brave [7], Firefox

[38], and Apple [26] have started to block third-party cookies by default as well. This

caused the count of tracked consumer journeys to decline [30]. In combination with the

GDPR becoming effective, a different approach of predicting the consumer’s segments

based solely on the current request was developed. This is described in Section 3.5.

Server-Side Segment Prediction without Cookies

To migrate away from the Cookie-based approach, age and gender prediction based on

the “User-Agent” HTTP-Header field was considered. This thesis calls this the “User-

Agent-based approach”. The User-Agent field-value is a string containing a list of

product identifiers with optional comments identifying the browser and its subproducts

by their name and version [21]. An example of a User-Agent string is the following:

Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:86.0) Gecko/20100101 Fire-

fox/86.0

It is sent along with an HTTP request and is commonly used for content negotiation

where the server selects which content to respond with, according to the products and

version numbers listed in the User-Agent string. This encoded information can be

parsed and interpreted to determine the operating system, the device model, the browser

version, etc. With a set of hard-facts of age and gender information for known cus-

tomers, the User-Agent strings sent by their browsers can be collected on each website

visit and be collected into a data set. This data set can then be used to train a model,

which is able to predict the segment an unknown consumer most probably belongs

to [4]. The information provided in the User-Agent is limited but still carries some

information [19].
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Requirements

In this chapter the requirements that define the frame of this work are discussed. In

particular this relates to the prediction performance of the logistic regression model

described in Section 4.1, privacy considerations, presented in Section 4.2, and technical

challenges, discussed in Section 4.3.

4.1 Prediction Requirements

For a new approach to be considered a valuable contribution it has to deliver additional

value over other simpler approaches. Such a solution is for instance the User-Agent-

based approach introduced in Section 3.5. As it deals with data available on the server,

it does not need to be executed on the client’s device, which makes its application

simpler.

The Cookie-based approach, introduced in Section 3.5 servers as another bench-

mark. Its application is more complex because it does not preserve the consumer’s

privacy and therefore requires consent under the General Data Protection Regulation

as discussed in Section 4.2.

The developed approach should have comparable accuracy to the widely applied

19
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state-of-the-art approaches such as the aforementioned User-Agent-based and Cookie-

based approaches.

Since the User-Agent-based approach is using less data for the prediction, it is

expected to have lower accuracy than the developed approach, while the Cookie-based

approach has more data available and is therefore expected to have higher accuracy

than the developed approach.

4.2 Privacy Challenges

One of the main goals of this thesis is to provide a solution that protects the consumer’s

privacy. This section gives an overview of the different challenges and requirements

that have to be faced when dealing with consumer privacy on the internet.

4.2.1 General Data Protection Regulation

The General Data Protection Regulation (GDPR) was implemented on May 25 2018. It

regulates data protection and privacy for data processing and transfer of personal data

within, as well as outside the European Union (EU) and the European Economic Area

(EEA). Its main goal is to give each individual control over their personal data. [49]

Therefore, the common method of targeting consumers by tracking them now re-

quires the consumer’s consent and would for example need a method, that keeps all

personal data on the consumer’s device. If no consumer consent is given, the personal

data of the consumer can not be sent away from the device.

4.2.2 Definition of Personal Data

The EU law has its own definition of “personal data”. An excerpt on this definition

from Article 4(1) of the GDPR [49]: “‘personal data’ means any information relating

to an identified or identifiable natural person (‘data subject’); an identifiable natural

person is one, who can be identified, directly or indirectly, in particular by reference to

an identifier [...]”.
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The following is a list of examples of “personal data” provided by the European

Commission, which includes:

⇧ Name and surname

⇧ Home address

⇧ Email address

⇧ Identification card number

⇧ Location data

⇧ IP addresses

⇧ A Cookie ID

⇧ The advertising identifier on a mobile phone

⇧ Data held by a doctor or hospital including symbols that uniquely identify a

person

This results in the situation that the conventional tracking approaches such as the one

used by the Cookie-based approach explained in Section 3.5 can not be legally con-

ducted without the consumer’s consent, because “A Cookie ID” and “The advertising

identifier on a mobile phone” would be needed but are both can be assumed to be

personal data.

However, a prediction of an age and gender segment does not allow to uniquely

identify a user at a later point in time and is therefore not assumed to be personal data.

4.2.3 Definition of Fingerprinting

A way to avoid using cookies but still being able to track consumers on their journey

through the internet is possible by creating a fingerprint. This is done by deterministi-

cally generating a string based on several settings and values found on the consumer’s

device and sending this string back to the server. Such a fingerprinting function has

the feature that it is robust in a way that it always produces the same fingerprint on the
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same browser on the same device. While at the same time it is very sensitive such that

it creates a different fingerprint when on a different browser and device [31].

It essentially enables tracking even if the consumer clears the cookies or has them

completely disabled. This allows tracking without cookie support from a technical

perspective, however, it does not allow it from a legal perspective, as the fingerprint

can be used to identify the consumer and is therefore assumed to be “personal data”.

4.3 Technical Challenges

This section discusses the technical difficulties. In traditional approaches, the data is

collected locally on the client and sent to the server. To predict the segments on the

client, the model has to transfered to the consumer device. This impacts the page

loading speed due to increased bandwidth by the model download and resource usage

caused by the prediction process, discussed in Sections 4.3.2, 4.3.3, and 4.3.4. As

the browser and device landscape is very broad, supporting all browser and device

combinations is another challenge. This will be discussed first.

4.3.1 Browser and Device Support

The device landscape consists of desktop computers with a count of operating systems

and mobile phones from many manufacturers running several operating systems with

several browsers having a wide range of different versions. Even though browser man-

ufacturers are adhering to standards, browser behavior is inconsistent, this is also called

Cross Browser Inconsistency (XBI) [46]. Even within versions of the same browser be-

havior incosistencies can be found. As it would be infeasible to support 100% of all

combinations in use we set the goal to support 95% of them. This browser usage data

was gathered from real-world RTB traffic. By analyzing the browser usage distribu-

tion, we identified the minimum required version for each of the popular browsers to

reach this goal. Based on these insights, tests with the required browser and version

combinations tests were conducted using the Lambdatest platform 1, to ensure that

1https://www.lambdatest.com/
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Browser Name Min. Version

Amazon Silk 69.0.3497
Android 4.3.1
Chrome Mobile iOS 71.0.3557
Chrome Mobile WebView 69.0.3497
Chrome Mobile 69.0.3497
Chrome 15.0.874
Chromium 15.0.874
Edge 15.15063.0
Firefox iOS 14.0.0
Firefox Mobile 68.0.0
Firefox 4.0.1
IE 10.0.0
Mobile Safari UI/WKWebView 8.0.0
Mobile Safari 8.0.0
Opera 20.0.1387
Safari 5.1.7
Samsung Internet 10.1.00.27 (like Chromium 71)
Yandex Browser 15.12.1

Table 4.1: Browsers that need to be supported to be able to handle 95% of the traffic. Each version is
the lowest version number that needs to be supported in order to reach this goal.

the Bluestreak library is working correctly on the required version ranges. The list of

browsers with their lowest required version to be supported can be seen in Table 4.1.

4.3.2 Page Loading Speed Impact

The time a page takes to deliver the content the consumer is requesting has a direct

impact on the user experience [48]. Therefore, client-side segment prediction mustn’t

add an overhead on processing power that has a noticeable negative impact on the user

experience. Measuring this is complicated by the lack of a single metric to determine

page loading time. In performance measuring tools like Lighthouse, four metrics are

usually considered [22]. These four metrics are listed below in chronological order:

Time to First Byte (TTFB) The time between sending the HTTP-Request header and

the first byte received from the webserver.
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First Contentful Paint (FCP) The time at which a display element is displayed in the

browser for the first time.

First Meaningful Paint (FMP) The time at which the user perceives the website to

be loaded.

Time to Interactive (TTI) The time at which the website has been rendered and is

ready for user input.

For the consumer perception of page loading time it does not matter whether the

time is spent downloading the content, executing the scripts, or rendering the content.

Hence, all steps have to be considered in a page loading speed measurement. During a

page load, the consumer first perceives progress after the First Meaningful Paint (FMP).

Since the display of advertisement banners is not required for a web page to be

functional, it is not relevant for the script to be fully executed before the FMP point

is reached. It is only relevant how much the execution of the script slows down the

rendering of the page when executed alongside the normal page load.

For this reason, resources may be loaded the background. This is done by triggering

them through the “onLoad” event, which is fired after an object defined in the website’s

HTML-code is loaded. Such an object can for example be the the HTML body elemnt.

4.3.3 Size Limitations

The median page weight, the byte count of all resources loaded by a website, has been

rising in the past 10 years as shown in Figure 4.1. On the examined pages the median

byte count increased from about 0.52 MiB (Desktop) and 0.14 MiB (Mobile) in 2011

to about 2.06 MiB (Desktop) 1.89 MiB (Mobile) in the year 2020. This shows that

the difference in page-weight between desktop and mobile pages has mostly vanished.

That means the limitations regarding bandwidth use are not as strict anymore and it is

not necessary to build a separate version for a mobile device, but rather build a model

that performs well on mobile and desktop devices.

However, especially for mobile connections the number of requests, can have a

significant impact on the page loading times, as each new request costs time, even if

the connection provides high bandwidth.



4.3. Technical Challenges 25

UX research shows [64] that slow page loads cause the consumer to bounce (abort

the request), which is a bad consumer experience. This leads to a lower chance of

the consumer using the page in the future, lost revenue for the publisher, and loss of a

potential customer for the advertiser.

Figure 4.1: Summed transfer size of the resources requested by several popular web page resources in
a timeseries [25].

4.3.4 Processing Limitations

A high CPU usage causes the page to load slower and gives a less fluent experience

[20]. On a mobile device, increased CPU load contributes to faster battery drain.

Potential factors are parsing of the code and the model, as well as collecting features

that cause many CPU cycles. Therefore, the CPU usage was determined by measuring

the time spent executing the JavaScript code measured in milliseconds.

4.3.5 Memory Limitations

Similar to the CPU requirements described in Section 6.3.1 limitations apply to RAM

usage as well. The code is executed in the browser’s JavaScript engine, which provides

a heap that each script uses to allocate objects [50]. Low-end and last generation mo-

bile devices have little avilable memory which incrases the risk of impacting the user

experience by exhausting this resource [54].
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Requirements Summary

Based on the aforementioned limitations we developed the following requirements for

our contribution: the overhead induced by executing the Bluestreak library should not

be unreasonable compared to the website’s resource usage. The perceived loading time

of the page should not be exaggerated, which means in detail that, the library size

should be kept small in comparison to the page size, the time executing the library

should not add a considerable overhead, and the heap space footprint should be within

reasonable limits compared to the size of the website. We aim at an overhead less than

the resource consumption by the website itself.
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Contribution

The name “Bluestreak” was chosen because of the bluestreak cleaner

wrasse. A small blue fish with a black stripe on the side that lives in a

mutualistic relationship with larger fishes [60]. If the consumer is seen as

such a big fish, our library can be seen as the bluestreak cleaner wrasse,

built to live in a mutualistic relationship with the consumer.

This chapter discusses the implementation work done for this thesis. Based on the

requirements mentioned in Chapter 4, we implemented the Bluestreak library and web

server written in TypeScript discussed in Section 5.2, and the code for training the

logistic regression model written in Python discussed in Section 5.1.

5.1 Logistic Regression Model Development

The training of the model was done in Python using the Pandas [34, 35] and the scikit-

learn [47] library. For the training a real-world data set was used, which is described

in the following:

27
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Data Quality Assesment

In general, a larger data set is better for training than a smaller data set. However,

quantity does not equal quality. Therefore, we determine the data quality not just based

on the number of unique data points, but also evaluate their distributions among the

segments.

Another important aspect is the origin of the data. While training models with

synthetic data is possible, the data set we are using was provided by an RTB advertising

company. It contains real-world data that was collected over a period of 3 days from

one website. It contains 13,489 data points, each data point is made up of the features

and the hard-fact data for either age, gender, or both of an individual. The data was

provided by a German real-time bidding demand-side platform operating mostly in

Europe with a focus on the German-speaking market.

Age and Gender Distribution

According to the 13,489 hard-fact data points, 6,414 are in the “Female” segment and

6,389 are in the “Male” segment, as can be seen in Figure 5.3. For the remaining 686

data points, no gender hard-fact information was available. Therefore, the distribution

of users in the gender segments is quite even as can be seen in Figure 5.2. However,

regarding age segments, the distribution is not as balanced. With 3,966 datapoints in

the “20-29”, 3,224 in the “30-39”, 2,040 in the “40-49”, 1,493 in the “50-59”, and 1027

in the “60+” segments, the younger aged segments are much more prominent than the

older aged segments, which can also be seen in Figure 5.1. Of all data points, 739 had

no hard-fact data for the age segment.

In summary, the data set used for model training provides a diversified sample from

all segments. However, as the age segments “20-29” and “30-39” are overrepresented

compared to the age segments “40-49”, “50-59”, and “60+”, it is necessary to either

remove data points from the overrepresented segments or perform oversampling on the

underrepresented segments to avoid a bias towards the overrepresent segments during

model training. To avoid removing valuable information from the data set, the latter

approach of oversampling is taken for training the model.
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Figure 5.1: Age distribution.
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Figure 5.2: Gender distribution.
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Figure 5.3: Comparison of datapoint counts.

Age Segment Count

20-29 3,966
30-39 4,224
40-49 2,040
50-59 1,493
60+ 1,027

Table 5.1: Age distribution.

Gender Segment Count

F 6,414
M 6,389

Table 5.2: Gender distribution.

Total Count

Users 13,489

Table 5.3: Total users.

Features

Each data point has the same 230 features. But in case a browser does not support a

certain API or does not offer a certain feature the value is “null”. This is the case for
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about 7% of the feature values in the data set. However, even if the value is “null”

this very fact may carry important information in combination with other features.

One must also consider that not every single feature is relevant and depending on the

browser some of these features carry redundant information. Therefore, they are not

all used for the prediction. For a detailed discussion on the selected features (those

deemed valuable by the L1 regularization) see Section 5.2.1.

In summary, it is difficult to represent the quality of the feature values in absolute

numbers. However, a good way to evaluate the quality of the information they pro-

vide is by training the model and comparing the prediction results against the baseline

approaches.

5.1.1 Model Training

The training was performed by first splitting the complete data set using stratified 5-fold

cross-validation, such that the training data set has a size of 80% and the testing data set

has a size of 20%. This allows comparing the prediction performance of the different

models trained on the different folds of the data set [29]. Figure 5.4 shows the Receiver

Operating Characteristic (ROC) of the Bluestreak models trained on the different folds

for gender segment prediction. Figure 5.5 shows the ROC for the User-Agent-based

models. The models of the different folds for the Bluestreak model performed an Area

Under Curve (AUC) of 0.61 to 0.63, while the User-Agent-based models performed

with an AUC of 0.57 to 0.59. The AUC for all models is > 0.5 which indicates that the

algorithm is suitable for the problem and the data set contains the necessary information

to differentiate a consumer in the “Female” segment from a user in the “Male” segment.

5.1.2 Hyperparameter Tuning

Hyperparameters allow controlling the learning process in machine learning. By tuning

them the optimal set of hyperparameters is chosen determined by the performance of

the models trained with different hyperparameters. Therefore, in the following, we

describe the hyperparameter tuning process of the inverse regularization strength and

the feature selection we applied when training the model.
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Figure 5.4: Receiver Operating Characteristic of the Bluestreak model.

Inverse Regularization Strength of L1 Regularization

When training a logistic regression model with L1 regularization, a parameter called

the Inverse Regularization Strength, denoted with C must be specified. In order to de-

termine the right value for this parameter, a grid search has been performed, comparing

the results of models trained with different values of this parameter against each other.

To determine the range of the value for C where the results are the highest, different

values for C were at first randomly chosen. Based on the results the range with the best

performance was then examined in detail, as can be seen in Figure 5.9.

Feature Selection

Another parameter for this specific use case is the addition or removal of features.

As the L1 regularization identifies irrelevant features, we can first train a model on

all features and afterward do the second round of training by already removing the
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Figure 5.5: Receiver Operating Characteristic of the User-Agent-based model.

features that have been identifiable as irrelevant by the previous run. For this we have

two options: either we can remove the whole feature, or we can just remove a certain

“feature=value” combinations.

Taking the “language” feature as an example, listing them by the most to the

least frequent: “language=de” (12,185 times), “language=en” (8,850 times), . . . , “lan-

guage=no” (1 times). There is only one data point with the language “no” in the data

set, therefore, it is not a valuable feature to determine the belonging of a segment. So

instead of including or excluding the “language” feature as a whole, just the languages

that have been determined not valuable by the L1 regularization can be removed.

As a comparison of these two strategies, the results for the removal of whole fea-

tures are displayed in Figure 5.7 and the removal of just certain values are displayed in

Figure 5.8. This shows that the removal of features whole leads to a higher test score

compared to using all features. The removal of selected “feature=value” combinations

leads to an even higher score. Therefore the approach of removing “feature=value”

combinations has been chosen for model training.
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Figure 5.6:
No removal of features. .
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Figure 5.7:
Removing whole features. .
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Figure 5.8: Removing just
”feature=value” combinations.

Figure 5.9: Score of grid search over C for different strategies of feature removal by L1 regularization.

5.2 Library Implementation

The Bluestreak library is written in TypeScript, which is programmatically converted

(transpiled) into JavaScript for execution on the client. The file resulting from the

transpilation process of the front-end library will be referred to as the predictor-script.

It collects data to predict the consumer’s segments and sends them back to the back-

end. This library is served by a web server, also acting as the aforementioned back-end

using the koa web framework for handling web-requests.

Figure 5.10 shows the whole process of a consumer opening the webpage until it is

loaded and how the Bluestreak approach integrates into this process.

In order to use the Bluestreak library on a website, a script tag is used for loading the

predictor-script. When the browser encounters the script tag it requests the predictor-

script from the Bluestreak web server.

Unintuitively for a client-based approach, the data collection starts on the server-

side. When the browser requests the predictor-script, the data naturally sent along with

the HTTP-Request is pre-processed and sent to the client as part of the model input.

The reasoning behind this is to save time and bandwidth. For example, extracting in-

formation from the User-Agent is a non-trivial task, that requires sophisticated parsing

with a lot of rules. This costs processing time and increases the size of the library
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unnecessarily. Therefore, parsing of the User-Agent is done on the server, where a

database of previously parsed User-Agents is built for low-latency lookup of common

User-Agents. To avoid the overhead of an extra HTTP-Request, the data collected on

the server is injected into the library before it is sent as the response to the client.

Once the script execution is started a safety net for catching expected as well as

unexpected errors during the script’s execution is set up. Initially, this was done for

debugging purposes but later on, encountered errors turned out to be another source of

detecting certain implicit features for a browser and device combination.

While the features of the browser are collected, the Bluestreak model is down-

loaded in the background. The model could have been downloaded along with the

library, however, doing it in a second request allows for a smaller initial payload and

therefore a potentially sooner start of the feature collection as the download of the

model happens in the background. Furthermore, during the model download request

more features such as download speed and differences between client and server clock

can be collected.

This extra request allows to gauge the network speed and allows to estimate the

time difference between the clock of the client device and the clock of the server. To

gauge the time difference, the strategy of the NTP protocol is used [41].

Once all features are collected and the model has been downloaded, the segment

prediction starts. For this, an evaluator of the logistic regression model was imple-

mented. This evaluator sums all coefficients of all collected feature-value combina-

tions and applies the logistic function to calculate the confidence for each segment.

It then selects the segment with the highest confidence value from the age and gen-

der segments respectively. Only the predicted segments are then sent along with the

impression request. All collected data stays on the device.

This means that all processing of PII-data is transparent and in total control of the

client. Because the data is not sent to a server, it can therefore not be used to identify

the consumer again at a later point in time. From the perspective of the Bluestreak

server, every interaction is with a previously unknown entity as a predicted segment by

itself is too coarse to re-identify a previously seen individual.
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Figure 5.10: This figure shows (highlighted in teal color) how using the Bluestreak library changes
the diagram introduced in Figure 3.2. Through feature collection and segment prediction, consumer
segments are determined and sent along with the impression request, where previously the ID used for
tracking was sent. Server 1, 2, and 3 are just symbolic for different realms that may consist of multiple
servers.

5.2.1 Selected Features

This section discusses the selected features in detail. Each data point in the data set has

230 features. However, not all of the features are useful for segment prediction, there-

fore the number of features was reduced by removing those of which all coefficients

were set to 0 by the L1 regularization. A grouped overview of the selected features is

given in Table 5.4.

Audio

The Audio fingerprint, in combination with the User-Agent, helps to identify the browser

and device version with more precision. It is generated by generating a certain sound

which, can be expressed in a float that differs between the browser and device versions.
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Feature Short Description

Audio An audio fingerprint.
Battery If the battery is charging or not (if battery API available).
Browser The browser name and version as in Table 4.1 and

WebKit version.
CSS Colors† Default css colors, might differ based on theme of OS.
Devices†,⇧ Result from navigator.mediaDevices.enumerateDevices().
Errors Errors encountered during feature collection.
Language/Country⇧ combination of all language and country information.
OS CPU Number of CPUs.
Platform Underlying platform eg: Win32, Linux, iPhone, etc.
Plugins⇧ Installed plugins eg: Chrome PDF Plugin.
Timezone⇧ Timezone indicated by city.
Timings Different time periods measured during collection.
Touch Support Whether the device has a screen supporting touch input.
User-Agent A string describing the browser and device.
WebGL Values, and features like shaders and extensions.
Width & Height‡ All values regarding width & height of the screen and the

window.
⇧ Values encoded using one-hot encoding as explained in Section 5.2.2.
† Multiple values joined together in order of appearance.
‡ Multiple values joined together in alphabetical order.

Table 5.4: An excerpt of features used in data collection with a short description. A longer description
can be found in Section 5.2.1.

Battery

The Battery information consists of battery charging and discharging speed and the

current battery level. Charging speed in combination with the battery level can yield

information about battery health as well as the use of fast charging. The discharging

speed in combination with the battery level can yield information about the battery

health as well as the current power drain.

Browser

Information about the Browser is gathered via browser name and family fields, as well

as its version and the WebKit version. The browser version also allows gauging if

important apps like the browser are kept up to date or not.
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Connection

The Connection information allows differentiating if a device is used with a broadband

connection, via cable or WiFi, or through a mobile connection.

CSS Colors

The CSS Colors depend on the browser and its version but are sometimes also cus-

tomized by a theme selected by the consumer. This can be determined in combination

with the browser name and version.

Devices

The detectable Devices are determined by a call to navigator.mediaDevices.enumerateDevices().

These may be very limited on certain operating systems, but they can also be a good

indicator of what device is used by a consumer.

Errors

During execution, all encountered Errors are collected, which gives information about

missing features or broken APIs as these are consistent on each run. This feature

was originally only used for debugging purposes but was deemed useful in more fine-

grained browser detection.

Language/Country

Language and Country information is collected from several sources, namely all lan-

guange fileds found in the navigator such as: “navigator.language”, “navigator.languages”,

“navigator.browserLanguage”, “navigator.systemLanguage”, and “navigator.userLanguage”,

as well as the accept-language field in the HTTP-header. The “accept-language” field

also contains information about the preference factor, which allows an even better judg-

ment of how important a particular language is. It is also possible to get information

about the country, as the language identifiers usually also contain country information,

such as “en-US” or “en-UK”.
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OS CPU

The OS CPU information is gathered from the navigator.oscpu field. This information

also allows improving to identify which device model is used, if this information is

unclear based on for example the User-Agent field. It also helps to identify inconsistent

information if the browser reports a wrong User-Agent. In that case, this particular

segment prediction could be flagged as potentially inconsistent.

OS CPU and Platform

The Platform information is gathered from the navigator.platform field. This informa-

tion also helps to narrow down the device model information and uncover inconsisten-

cies.

Timezone

The Timezone field does not only provide information about the consumer’s time zone

but also which city was selected to represent a time zone.

Timings

During feature collection, different timestamps are recorded to determine how long the

feature collection took, how long the download of the model took and how big the time

difference between the client’s clock and the server clock is. This provides insights

into the processing speed, connection speed and can be an indication of the device’s

clock being out of sync relative to the server clock.

Touch Support

The Touch Support information is gathered from determining if touch support is avail-

able through the ontouchstart event and how many touchpoints are supported through

navigator.maxTouchPoints. This information also helps to narrow down the device

model and identify inconsistencies.
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User-Agent

The User-Agent can be used to determine the browser and device used to a certain

degree. But this is not always accurate. Therefore, it helps to combine this information

with other features discussed here.

WebGL

The WebGL information is gathered from several sources. First of all WebGL sup-

port can be identified. If WebGL is supported information about shaders and available

extensions can be gathered from WebGLRenderingContextBase. Through the use of

a canvas, it is possible to identify the GPU vendor and renderer as well as creating a

fingerprint to help identify the device model. This information also helps to identify

inconsistencies.

Width & Height

There are several Width & Height values that may provide information on a device.

First of all the regular screen width and height. But it is also possible to determine

how much of this screen real-estate is reported to be actually available. Otherwise, the

reported size of the outer window and boolean values if the device is in portrait mode

and if the browser’s “top bar” is present.

Excluded Features

A much larger number of other features have been considered. However, many of

these carry redundant information or are non-existent in modern browsers anymore.

Some also offer very low information gain while adding a lot of weight to the library

and increase the execution time tremendously, for example identifying installed fonts.

As those features were excluded by the L1 Regularization they proved to have either

no importance for the data set we are using or are simply not relevant for segment

prediction in general. Therefore we are not going into further detail on these features.



40 Chapter 5. Contribution

Summary

In summary, each feature by itself provides some information, but this information

can be leveraged by combining features with each other. They even allow to spot

inconsistencies regarding device information but also language information.

How features are combined is discussed in Section 5.2.3.

5.2.2 Data Pre-Processing

All numerical features were scaled to fit in the interval (0, 1) and all categorical features

were one-hot encoded, by creating a binary vector, equal in length to the number of

features, with a 1 indicating a presence of that feature and a 0 otherwise.

Due to the L1 regularization, it was not required to exclude features manually, as

they have been regularized down to 0 and could therefore be excluded from the final

model, without the need of assumptions on feature relevance.

5.2.3 Feature Engineering

The raw features themselves contain all the information available. However, if in-

terpreting the features manually, this information can be made better understandable

for the logistic regression algorithm. Taking the languages as an example, we have

several fields mentioned in 5.2.1. Looking just at the “accept-language” header from

the HTTP-Header, we might get a string like this: “de-CH,de-DE;q=0.9,de;q=0.8,en-

US;q=0.7,en;q=0.6”. This means that the most preferred language is the Austrian ver-

sion of German. However, the version of German spoken in Germany is in the same

preference level. The second highest preference level has the German language in

general. If those language options aren’t available the U.S. version of English has

the next highest preference, followed by general English as the least preferred ver-

sion. In this case, the logistic regression algorithm just sees this string and can not

interpret it. For example it could not corellate it to the almost similar string of “de-

CH;q=0.9,de;q=0.8,en-US;q=0.7;en;q=0.6;da;q=0.5”. To make this more accessible

the string can be split at each comma character.
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But this still wouldn’t be totally correlatable to the almost similar accept-language

header of “de-CH,de-DE;q=0.9,en-US;q=0.8,en;q=0.7”. As also seen in Figure 5.11

we decided to split up the language string such that all information contained in this

string can be interpreted:

de-CH,de-DE;q=0.9,de;q=0.8,en-US;q=0.7,en;q=0.6,da;q=0.5

SSOLW LQWR OaQgXage aQd cRXQWU\ b\ SUefeUeQce

E[WUacW
OaQgXage aQd cRXQWU\

E[WUacW RQO\ OaQgXage

de-CH;q=0.9
de-DE;q=0.9

de;q=0.8
en-US;q=0.7

en;q=0.6
da;q=0.5

E[WUacW RQO\ cRXQWU\
de-CH
de-DE
en-US

CH
DE
US

LaQgXage SaLUV
RUdeUed b\ SUefeUeQce

LaQgXageV
RUdeUed aOShabeWLcaOO\

da
de
en

LaQgXageV
RUdeUed b\ SUefeUeQce

de,en
de,da
en,da

de,en,da

da,de,en

langXage_pref="de-CH;q=0.9"
langXage_pref="de-DE;q=0.9"
langXage_pref="de;q=0.8"
langXage_pref="en-US;q=0.7"
langXage_pref="en;q=0.6"
langXage_pref="da;q=0.5"
langXage_lng_cnW="de-CH"
langXage_lng_cnW="de-DE"
langXage_lng_cnW="en-US"
langXage_cnW="CH"
langXage_cnW="DE"
langXage_cnW="US"
langXage_lng="da"
langXage_lng="de"
langXage_lng="en"
langXage_lng_pair="de,en"
langXage_lng_pair="de,da"
langXage_lng_pair="en,da"
langXage_lng_pref="de,en,da"
langXage_lng_alph="da,de,en"

IQSXW: LaQgXage SWULQg OXWSXW: FeaWXUe SWULQgV

Figure 5.11: Approach of splitting up the language string to make the information contained in it better
processable by the logistic regression model training algorithm.

It indicates that the languages “de”, “en”, and “da” are accepted but “de” is pre-

ferred over “en” and “en” over “da” and in general the language combination of the

three languages “da,de,en” are accepted. It allows correlating the countries “CH”,

“DE”, and “US”. Even though “fr” and “fr-CH” is not accepted, it is still possible

to correlate to “CH” due to splitting country and language.

Other language fields, those found in the “navigator” also provide further informa-

tion and can also be checked for inconsistencies, which would point to a misconfigura-

tion and mean that the data may not be trusted as much.

5.3 Supported Browsers and Devices

As stated in Section 4.3.1, it is required to support about 95% of the encountered traffic.

Through the use of shims (es5-shim and es6-shim) and by adding custom implementa-
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Name Size

Library (with shims) 41.9 KiB
Library (without shims) 18.8 KiB
Model 13.7 KiB

Table 5.5: Size of the Bluestreak frontend library with and without shims (support for inconsistent
browser behavior) and the size of the model with age and gender coefficients.

tion of functions (such as the “slice” and “reduce” methods of the Float32Array) that

are not available in all browsers we were able to support all versions listed in Table

4.1. Furthermore, some features, such as the battery API or the precision API, are not

available at all and these values are just left empty. For a specific use case, it should al-

ways be considered if the extra overhead produced by including these libraries is really

needed or if a higher percentage of traffic may be excluded for a simpler and slimmer

library.

5.4 Payload Size

As stated in the requirements, the size of the library, as well as the size of the model,

have to be kept as small as possible to minimize the noticeable impact by the consumer.

Therefore, two different versions of the library are shown in Table 5.5, where the size

difference between the library with shims and polyfills compared to the library without

can be seen. Despite the large number of considered features, the size of the model

could be kept considerably small due to the aforementioned feature selection.
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Evaluation

Based on the requirements developed in Chapter 4, we implemented a proof of concept

library and also trained a model for user segment prediction in the client’s browser as

described in Chapter 5. To evaluate if our contribution fulfills the requirements we

conducted the following experiments: At first, the performance of the trained model is

evaluated, then the effect on privacy-protection of individuals is analyzed, and finally,

the overhead on bandwidth, resource consumption, and overall page loading speed on

the client device is discussed.

6.1 Model Evaluation

The logistic regression models for the User-Agent-based and the Bluestreak approach

were trained on the real-world data set described in Chapter 5. In the following, their

performance is evaluated and compared against each other. As the User-Agent-based

approach is only relying on the User-Agent string sent in the HTTP-Header and there-

fore has less information available, the Bluestreak approach is expected to perform

better than the User-Agent-based approach.

Furthermore, we also compared the performance of the aforementioned models

43
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against the performance of a state-of-the-art approach using Cookies for recording user

history to predict the consumer segments as introduced in Section 3.5. This Cookie-

based approach was provided by an RTB advertising company, therefore it was im-

plemented as part of this work and was trained on a different much larger real-world

data-set. It serves as a real-world baseline for comparison. Since the Cookie-based

approach is using consumer journey data, which reveals more about the consumer’s

behavior it has a potentially better performance than the Bluestreak approach.

6.1.1 Results

This evaluation compares the sensitivity, specificity, and accuracy of the user segment

prediction of the User-Agent and the Bluestreak approach. This was done by first

counting the True Positives (TP), True Negatives (TN), False Positives (FP), and False

Negatives (FN) and then determining sensitivity, specificity, as well as accuracy and

comparing them among the different approaches. For the evaluation, the data set in-

troduced in Chapter 5 was used. Due to the limited size of the data set, it was split

using stratified 5-fold cross-validation, such that the training data set has a size of 80%

and the evaluation data set has a size of 20%. This allows training 5 different models,

where each is evaluated on a different portion of the data set. This allows using the

whole data set for evaluation while still keeping a strict partitioning of training and

evaluation data points for each model, as described in [29].

Sensitivity Comparison

Sensitivity measures a method’s ability to correctly identify subjects belonging to a

segment. It is defined as
T P

T P+T N

and therefore the True-Positive-Rate (TPR). In Figure 6.1 the sensitivity of the age

predictions and in Figure 6.2 the sensitivity of the gender predictions are compared.

The Bluestreak approach is generally performing better or about as good as the User-

Agent-based approach for the age segments, except for the “60+” age segment. For

the “F” (“Female”) segment, the User-Agent-based approach is performing better than
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the Bluestreak approach, however, the Bluestreak approach is performing better in the

“M” (“Male”) segment.
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Figure 6.1: Age sensitivity.
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Figure 6.2: Gender sensitivity.

Figure 6.3: Sensitivity results of the Bluestreak approach compared to the Cookie-based and User-
Agent-based approaches.

Specificity Comparison

Specificity measures a method’s ability to correctly identify subjects not belonging to

a segment. It is defined as
T N

T N +FP

and therefore equivalent to 1� False-Positive-Rate (FPR). In Figure 6.4 the specificity

of the age predictions and in Figure 6.5 the specificity of the gender predictions are

compared. Here the Bluestreak approach is generally performing better or about as

good as the User-Agent-based approach. For the “F” segment, the Bluestreak approach

is performing better than the User-Agent-based approach, however, the User-Agent-

based approach is performing better in the “M” (“Male”) segment.

Accuracy Comparison

Accuracy measures a method’s ability to do both, correctly identify subjects belonging

to a segment and those not belonging to a segment. It is defined as

T P
T P+FN

,
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Figure 6.4: Age specificity.
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Figure 6.5: Gender specificity.

Figure 6.6: Specificity results of the Bluestreak approach compared to the Cookie-based and User-
Agent-based approaches.

and equivalent to the sum of all sensitivity and all specificity segments respectively. In

Figure 6.7 the accuracy of age predictions, and in Figure 6.8 the accuracy of gender

predictions are compared. Here the Bluestreak approach is performing better than the

User-Agent-based approach for both segments.
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Figure 6.7: Regarding age accuracy, the
Bluestreak approach achieves a 4 percentage
points higher accuracy than the User-Agent-
based approach. .
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Figure 6.8: Regarding gender accuracy, the
Bluestreak approach achieves a 2 percentage
points higher accuracy than the User-Agent-
based approach.

The overall comparison for the model evaluation can be seen in Figure 6.11. The

results show that the Bluestreak approach is performing better than the User-Agent-
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Segment Sensitivity† Specificity† Sensitivity‡ Specificity‡

20-29 45.91% 15.78% 39.73% 24.81%
30-39 14.17% 30.59% 28.91% 29.72%
40-49 5.24% 28.95% 16.59% 31.90%
50-59 6.29% 27.65% 20.95% 30.58%
60+ 57.09% 22.35% 29.90% 29.41%

F 65.06% 49.25% 56.38% 62.29%
M 49.25% 65.06% 62.29% 56.38%
† Stands for User-Agent-based approach.
‡ Stands for Bluestreak approach........................................................................................................

Table 6.1: Per segment comparison of the sensitivity and specificity of the User-Agent-based approach
and the Bluestreak approach.

Overall Sensitivity† Specificity† Accuracy† Sensitivity‡ Specificity‡ Accuracy‡

Age 25.74% 25.06% 25.15% 27.22% 29.29% 29.45%
Gender 57.15% 57.15% 57.17% 59.34% 59.34% 59.33%
† Stands for User-Agent-based approach.
‡ Stands for Bluestreak approach.

Table 6.2: Overall comparison of the sensitivity, specificity, and accuracy of the User-Agent-based
approach and the Bluestreak approach.

based approach. Therefore, the requirements stated in Section 4.1 have been met.
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Figure 6.9: Age overall.
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Figure 6.10: Gender overall.

Figure 6.11: Overall prediction results of the Bluestreak approach compared to the Cookie-based and
User-Agent-based approaches.
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6.1.2 Comparison to the Cookie-Based Approach

Regarding age accuracy, the Cookie-based approach achieves a 19 percentage points

higher accuracy than the Bluestreak approach, while the Bluestreak approach achieves

a 23 percentage points higher accuracy than the User-Agent-based approach, as seen

in Figure 6.12. Regarding gender accuracy, the Cookie-based approach achieves a 22

percentage points higher accuracy than the Bluestreak approach, and a 24 percentage

points higher accuracy than the User-Agent-based approach as seen in Figure 6.13.
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Figure 6.12: Cookie-based approach age ac-
curacy compared to the Bluestreak approach
and User-Agent-based approach. .
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Figure 6.13: Cookie-based approach gender
accuracy compared to the Bluestreak approach
and User-Agent-based approach.

6.2 Privacy Evaluation

This section compares the gain in consumer privacy of the Bluestreak approach over

other approaches.

To determine the gain in privacy we have calculated the uniquely identifiable users

in three different scenarios:



6.2. Privacy Evaluation 49

Unique Identifier Each individual is identified with a unique identifier like a cookie

ID. Therefore, no two different individuals will get the same identifier.

Fingerprint All data not sensitive to change between sessions is gathered on the

device and concatenated into a long string. This string is then hashed and used as the

fingerprint. This is a common method for building browser fingerprints [66].

Bluestreak Only the predicted age and gender segments are used are sent back to the

server.

Privacy Results

The results for the different scenarios are shown in Figure 6.14. The total number of

individuals is 13,489. In the Unique Identifier scenario, each user is assigned a unique

identifier, like a cookie ID, which makes 100% of the users identifiable.

For the Fingerprint scenario a fingerprint is built based on the raw data on the

device. In this scenario 11,126 (or 82.48%) users can be uniquely identified with this

fingerprint.
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Figure 6.14: Users that are uniquely identifiable by different approaches. The lower the percentage the
higher the chance of an individual user to be not uniquely identifiable.
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In the Bluestreak scenario not a single individual could be uniquely identified by

just using the predicted segments. Therefore, a predicted age and gender segment could

not be used to re-identify an individual and can therefore not be considered personal

data, this confirms the requirement discussed in Section 4.2.1. One could argue that,

if the prediction assigns one individual an age and gender segment combination not

assigned to any other individual, that this individual could be re-identified by the algo-

rithm. However, this is a very unlikely case if the number of individuals is much larger

than the number of segments. Therefore, the assumption that two different requests

are coming from the same individual, just based on the same predicted age and gender

segment, would only make sense if there are more segments than individuals.

6.3 Performance Overhead Case-Study

It is not trivial to determine the performance overhead in a single metric, as each device

could behave differently, and depending on the scenario a big overhead in one category

might have a big impact on one device but a small impact on another. It is also difficult

to determine at what point the overhead becomes too big. Especially when considering

that each individual values their privacy differently.

Therefore, we conducted a case study to assess the performance measured with and

without the Bluestreak library.

Experiment Setup

To test the library in a realistic environment, we decided to conduct the experiment on

popular websites that display banner ads next to the content they are publishing. To

inject the library, we used an HTML-iframe tag, in the following simply called iframe.

For this, We created an HTML-file containing the Bluestreak library in a script tag and

the website in an iframe. However, this technique is not optimal, as it does not work

on every website, therefore we could only test it on such websites that allowed the

inclusion via an iframe. In particular, we tested in on a German news website (referred

to as Website 1), a German gaming-news website (referred to as Website 2), and a

German tech-news website (referred to as Website 3).
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The performance was measured using the Chrome DevTools performance profiler

[37]. It allows measuring the heap usage and CPU time spent on executing JavaScript.

As the library and the tested site itself are running in different iframes, it is possible

to record the resource consumption of each separately. Furthermore, it is possible to

determine the Time to First Paint, which gives us an indication of how much the page

loading speed is impacted by executing the Bluestreak library.

Each site was tested in three different scenarios:

direct this scenario measures the impact when the Bluestreak library is executed dur-

ing page load, therefore the Bluestreak library is included directly in a script

tag.

onLoad this scenario measures the impact when the Bluestreak library is executed

after page load, therefore the script is injected by a function triggered by the

“onLoad” event.

plain this scenario profiles the website without the Bluestreak library.

This allows differentiating the impact on page loading speed between the three scenar-

ios.

For each of the three websites, each of the three scenarios was repeated ten times. In

total 90 executions were performed. The milliseconds of CPU time used for scripting

was calculated by averaging the CPU time of the executions on each website respec-

tively. The same was done for RAM usage. The experiments were conducted on a

Lenovo ThinkPad T470, running Ubuntu 20.4 and Chrome version 87.0.4280.88.

6.3.1 Performance Overhead Results

Several aspects have been evaluated to assess the performance overhead induced by

our approach, including CPU usage, RAM usage, script execution time, as well as

bandwidth overhead.

As stated in the requirements, the display of advertising banners can be done in the

background, after the “onLoad” event, to limit the main page loading speed impact.
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For this reason, two scenarios have been evaluated to determine the impact on page

loading speed:

1. the Bluestreak library is executed directly while the page is loading

2. the Bluestreak library is executed after the “onLoad” event has been fired

Page Loading Speed Impact

The impact on page loading speed is displayed in Figure 6.15. Measured was the

”Time to First Paint” in Chrome DevTools. The center lines in the figure represent

the medians, box limits indicate the 25th and 75th percentiles, whiskers extend 1.5

times the interquartile range from the 25th and 75th percentiles, and the data points are

represented by small black circles. It shows that most of the measurements lie close

to each other except for a few outliers. Therefore, the median lines will be used for

comparison, as outliers are biasing the average value.

The “direct” scenario has the highest impact on the Time to First Paint, for all three

websites the median of the “direct” scenario are the highest. However, when delaying

execution to after the “onLoad” event is fired, the median Time to First Paint can be

reduced in all three scenarios. Finally, for each of the three sites, the median Time to

First Paint is the lowest in the “plain” scenario, because no additional code is executed.

CPU Usage

The Bluestreak library required 528 ms (on Website 1), 543 ms (on Website 2), and 714

ms (on Website 3) of CPU time on average. This is already a substantial part compared

to the CPU time used by the tested websites themselves, as shown in Figure 6.22.

An interesting observation can be made in Figure 6.18. The Bluestreak library took

714 ms while in the other figures it took 528 ms and 543 ms. The reason behind this is

unclear.
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RAM Usage

On average the amount of heap space used by the frame of the Bluestreak library was

measured to be between 4.14 MiB and 4.36 MiB as shown in Figure 6.22. When the

Bluestreak library was not loaded, the heap space occupied by the frame was 1.72 MiB

on average. Therefore, it is likely that not all of the measured occupied heap space can

be accounted for by the Bluestreak library. This means we will assume 4.36 MiB as an

upper bound. Therefore, the heap space occupied by the Bluestreak library is less than

the heap space usage of each of the websites on average.

It is also important to note that the frame of the site does not include other iframes

loaded by the site such as advertisement banners, etc. This means that the heap space

usage incurred by loading the site may be higher overall than what is reported for the

website in this work.

Website plain onLoad direct

Website 1 149.25 ms 175.40 ms 292.20 ms
Website 2 124.35 ms 214.20 ms 240.90 ms
Website 3 250.55 ms 305.35 ms 360.60 ms

Table 6.3: Median time in milliseconds elapsed until Time to First Paint.

Website Frame Heap Space Scripting Time

1 Website 8.61 MiB 775 ms
Bluestreak 4.36 MiB 528 ms

2 Website 7.98 MiB 581 ms
Bluestreak 4.14 MiB 543 ms

3 Website 12.07 MiB 858 ms
Bluestreak 4.30 MiB 714 ms

Table 6.4: Average RAM and CPU usage of the website frame and the Bluestreak frame compared on
three different websites.
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Figure 6.15: Page loading speed impact measured on several news websites without the Bluestreak
library, with the Bluestreak library directly being executed, and with a time-delayed execution of the
Bluestreak library.

Bandwidth Consumption

While the prediction results that are being sent back to the server are made up of just

a few bytes identifying the predicted age segment and gender segment, the majority of

bandwidth is consumed by the JavaScript library and the model itself.

As discussed in Section 4.3, the bandwidth requirements of websites have been

increasing in recent years. As a baseline, we are considering the median size for a

mobile website in the year 2020, of 1.89 MiB [27]. As listed in Table 5.5 the size of

the Bluestreak library with shims (with support for older browser versions) is 41.9 KiB

and therefore considerably larger than the size of the Bluestreak library without shims

of 18.8 KiB. The model itself has a size of 13.7 KiB. Using the more heavy version,

the Bluestreak library with shims, and adding the overhead of the Model yields a total
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Figure 6.16: CPU usage, website 1.
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Figure 6.17: CPU usage, website 2.
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Figure 6.18: CPU usage, website 3.
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Figure 6.19: RAM usage, website 1.
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Figure 6.20: RAM usage, website 2.

�����0L%

������0L%
:HEVLWH��
�����

%OXHVWUHDN�/LEUDU\
�����

�

Figure 6.21: RAM usage, website 3.

Figure 6.22: Resource consumption measured using Chrome DevTools on three different websites.
CPU usage in milliseconds of scripting time, RAM usage calculated by occupied heap space.

overhead of 55.6 KiB. Compared to a total page weight of 1.89 MiB, the bandwidth

overhead is about 2.94%.

Summary

In summary, an overhead on all three measured metrics: loading speed, CPU usage, and

RAM usage was measurable as can be seen in Table 6.5. All of the measured numbers

are less than the numbers measured of the websites themselves, but they make up a
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noticeable portion. However, the numbers recorded for each website serve as a lower

bound as only the frame of the site itself was taken into consideration, not other frames

that may be loaded by the site like advertisement banners, etc. Therefore, the impact

on the user experience might not be as severe as it seems from the numbers reported in

the table.

Metric Website 1 Website 2 Website 3

Loading Speed 49.68% 6.80% 35.33%
Scripting Time 68.13% 93.58% 83.27%
Heap Usage 50.59% 51.88% 35.65%

Table 6.5: Average percentual increase of each measured metric.

Furthermore, it is possible to reduce the impact on page loading speed by delaying

the execution of the Bluestreak library until after the “onLoad” event has been fired.

However, this also delays the calculation of the prediction results, therefore this might

not always be possible.



7
Conclusion

In this thesis, we introduced a novel approach for age and gender segment prediction,

which utilizes data of the consumer’s browser to perform the prediction on the de-

vice instead of sending the personal data to a web server, therefore not violating the

consumer’s privacy. In summary, we gave an introduction to the state of the art in

online advertising and the related privacy issues. Furthermore, we introduced logistic

regression and its use to predict age and gender segments in the context of Real-Time

Bidding (RTB). We specified requirements that should be fulfilled to enable on-device

prediction and described how we implemented our approach to overcome the technical

challenges posed by these requirements. We conducted experiments and case-studies

to evaluate the overhead on the client devices and our results show that the overhead is

manageable and the impact on the user experience can be adjusted for the use-case, eg.

by delayed execution or the removal of low impact features.

Furthermore, we compared the accuracy, sensitivity, and specificity of the Bluestreak

approach to a User-Agent-based approach. This was done to assess the prediction per-

formance improvement enabled by the increased amount of information present on the

consumer’s device. In addition, we compared our results to a state-of-the-art approach

that uses tracking cookies, which was provided by an RTB advertising company.

57
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The results indicate that it is indeed possible to predict these segments without

using cookies or fingerprinting methods while achieving a result that is better than a

purely User-Agent-based approach.

In conclusion, we demonstrated that previous privacy-violating practices can be re-

placed by a privacy-preserving method, while still providing valuable insights to the

advertiser. With our approach, each interaction of a consumer looks unique to the RTB

advertising company—even if the same consumer had a previous interaction already,

they still can not be re-identified by our method. Furthermore, consumers could po-

tentially verify that all personal data stays on their device by reviewing the delivered

JavaScript library. Therefore, they do not need to rely on a promise of responsible data

processing but rather can verify themselves.

7.1 Future Work

In future work, the Bluestreak library could be extended to give consumers the option

to send segments of their choice. This would enable them to request advertisements

closer related to their preferences.

With further effort, it would be possible to reduce the size of the library, by im-

plementing imported functions manually and by using a different compiler, like the

Google Closure compiler. The size of the model could be decreased further by hashing

the names and storing the values of the coefficients with a lower resolution. Also, the

library model could be tailored for each request individually, according to the informa-

tion provided in the User-Agent header.
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